线性代数-矩阵1习题

线性代数-矩阵1习题

矩阵的基本运算

主要涉及矩阵加法、数乘、乘法、转置。

矩阵的乘法

矩阵乘法的计算

例1
image-20200921171929520
image-20200921172018763
例2
image-20200921172152544
image-20200921172215029
例3
image-20200921172911518
image-20200921172926683
例4 这题没做出来
image-20200921172950596
image-20200921173003021
例5
image-20200921194558092
image-20200921194609085

矩阵乘法的性质

例1 一般矩阵乘法不可交换
image-20200921172539170
例2 基本消元不成立
image-20200921172656436
image-20200921172703926
image-20200921172722887
image-20200921172735637
image-20200921172748928

求逆矩阵

直接求逆矩阵

二阶:逆矩阵为:行列式分之伴随

高阶:\((A|E) \\rightarrow (E | A^-1)\)

例1
image-20200921181622666
image-20200921181704511
例2
image-20200921190010545
img
例3
image-20200921190214088
image-20200921190240647
例4
image-20200921190257191
image-20200921190315210
例5
image-20200921190334339
image-20200921190345113
例6
image-20200921190412677
image-20200921190424903

解矩阵方程

线性变换可以表示为矩阵方程。线性变化与矩阵方程一一对应。

例1
image-20200921182121252
image-20200921182156262
例2
image-20200921172357774
image-20200921172441038
例3
image-20200921182440339
image-20200921182452147
例4
image-20200921182523666
image-20200921182534303

可对角化矩阵多项式求解

例1
image-20200921190542818
image-20200921190559166
例2
image-20200921190638115
image-20200921190652914

分块矩阵

例1
image-20200921200754792
image-20200921200804271
例2 不会证
image-20200921204255430

\(\\left(\\begin{array}{ll}O \& A \\ B \& O\\end{array}\\right)^{-1} = \\left(\\begin{array}{cc} O \& B^{-1} A^{-1} \& O \\end{array}\\right)\)

\(\\left(\\begin{array}{ll}A \& O \\ C \& B\\end{array}\\right)^{-1} = \\left(\\begin{array}{cc} A^{-1} \& 0 \-B^{-1} C A^{-1} \& B^{-1} \\end{array}\\right)\)

例3
image-20200921204358157
image-20200921204422576

矩阵的证明

证明矩阵是对称矩阵

例1
image-20200921180830666

\(\\boldsymbol{B}^{T} \\boldsymbol{A} \\boldsymbol{B} = ((AB)^T B)^T = (B^T A^T B)^T\) 又A是对称阵,即\(A^T = A\) 则$(B^T A^T B)^T = (B^T A B)^T $

所以$\boldsymbol{B}^{T} \boldsymbol{A} \boldsymbol{B} = (B^T A B)^T \(,即\)B^T A B$是对称阵。

例2
image-20200921180914260

注:写出元素,用定义证明。

逆矩阵的证明

例1
image-20200921190730677

证明:因为 A^k = 0 所以 (E-A)(E+A+A2+…+A(k-1)) = E+A+A2+…+A(k-1) -A-A2-…-A(k-1)-A^k = E – A^k = E 所以 E-A 可逆,且 (E-A)^-1 = E+A+A2+…+A(k-1)

例2
image-20200921190839795
image-20200921190924362
img
例3
image-20200921192054099

AA*=|A|E,AA^-1=E .所以A*=|A|A^-1.既A*可逆。接下来就好做了。。。

伴随矩阵的证明

例1
image-20200921193142460

(1)证明: 假设\(|a^*|≠0\)\(a^*\)可逆 因为\(aa^*=|a|a=0\) 等式两边右乘\((a^*)^-1\)则得 \(a=0\)\(a^*=0\) 所以\(|a^*|=0\) 与假设矛盾.

(2)略


评论

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注