高等数学-一元微分学-可导函数的中值定理习题
考察中值定理的定义
考察罗尔定理的定义
例1
image-20200419191223856
image-20200419191114818
考察拉格朗日中值定理定义
例1
image-20200419194020246
image-20200419194350114
例2
image-20200419195057298
image-20200419195136725
image-20200419195152638
例3
image-20200420195449158
image-20200420195433746
其实这道题就是求极限,没考察中值定理
例4
image-20200420224321957
image-20200420224306297
例5
image-20200421151721709
image-20200421151648390
image-20200421151707394
例6
image-20200421194140003
image-20200421194123394
例7
image-20200421210050736
image-20200421210034865
考察泰勒定理
例1
image-20200419200751777
image-20200419200728386
例2
image-20200420110500021
image-20200420110442108
分母也可使用泰勒展开替换
例3
image-20200420111856720
image-20200420111915216
image-20200420111931538
其实此题不用泰勒展开,多次使用洛必达法则,也可求出a和b,而且更简单
例4
image-20200420115526420
image-20200420115505603
例5
image-20200421210709905
image-20200421210619877
image-20200421210647408
求证存在\(\\xi\)使等式成立
求证\(f^{(n)}(\\xi)=0\)
一般会用到罗尔定理
找多个相同值点,多次使用罗尔定理
例1
image-20200417134624096
image-20200417134756621
本题使用2次零点定理+罗尔定理证明
例2
image-20200417135300981
image-20200417140421456
image-20200417140650913
image-20200417141636783
介值定理+罗尔定理得两个等值点,再用一次罗尔定理证明 函数值相加要想到用介值定理
例3
image-20200417150456153
image-20200417150429213
例4
image-20200419225623647
image-20200419225701750
例5
image-20200420095404906
image-20200420095349655
求证仅含\(\\xi\)的等式
即求证仅包含\(\\xi\)不包含其他字母的等式
一般方法包括积分还原法和微分方程法
微分中值定理证明题中构造辅助函数的方法
积分还原法求证仅\(\\xi\)的等式
左侧可化为\(\\frac{f^{\\prime}(x)}{f(x)}=\[\\ln f(x)\]^{\\prime}\)的式子
一般要求要证的式子包含一个函数及其导数(差一阶),有些可以变换到求证\(\\frac{f^{\\prime}(x)}{f(x)}=\\cdot \\cdot \\cdot\)的形式,我们可以将左右都看作是函数的导数。
而\(\\frac{f^{\\prime}(x)}{f(x)}=\[\\ln f(x)\]^{\\prime}\),即证\(\[\\ln f(x)\]^{\\prime}-\[balabala\]^{\\prime}=0\), 即证\({\\ln \[f(x) \\cdot balabala\] }^{\\prime}=0\)。
则我们一般可以取辅助函数\(\\phi (x) = \\ln \[f(x) \\cdot balabala\)来求证。
例1
image-20200417173651484
image-20200417173758475
image-20200417173938459
例2
image-20200417195732919
image-20200417195827982
例3
image-20200417200632830
image-20200417200930439
image-20200417201031243
image-20200417201129388
例4
image-20200420091719475
image-20200420091737995
例5
image-20200420100144941
image-20200420100203236
image-20200420100219163
例6
image-20200421120216621
image-20200421120237517
例7
image-20200421162121240
image-20200421162134466
image-20200421162101282
例8
image-20200421163921890
image-20200421163905819
例9
image-20200422112237034
image-20200422112202616
例10
image-20200422113633153
image-20200422113714619
image-20200422113734732
找其他原函数
变为式子=0
的形式,式子左侧作为函数,试着积分,可解的的话,就可作为辅助函数。
例1
image-20200421155838520
image-20200421155825050
例2
image-20200421171654698
image-20200421171619179
微分方程法
将要证的方程看作微分方程,解出函数的形式,作为辅助函数。
例1
image-20200420102643447
image-20200420102659501
例2
image-20200421154812481
image-20200421154745450
求证含\(\\xi\)和a与b的等式
这里a,b指区间端点,一般是在[a,b]上连续,在(a,b)上可导
a,b与\(\\xi\)可分离
若a,b侧有如下形式,则使用对应的方法求解

例1
image-20200417202303061
image-20200417202354879
例2
image-20200417202625491
image-20200417204213695
a,b与\(\\xi\)不可分离
\(\\xi\)变为x,去分母,移项,变为式子=0
, 将其看作(?)'=0
,以?部分作辅助函数来证明
例1
image-20200417204924273
image-20200417205042765
image-20200417205218979
例2
image-20200421163135029
image-20200421163036916
image-20200421163100435
求证存在\(\\xi\)和\(\\eta\)使等式成立
仅有\(f^{\\prime}(\\xi), f^{\\prime}(\\eta)\)
方法是找3个点,使用2次拉格朗日中值定理
例1
image-20200418142509820
image-20200418143040335
image-20200418143150291
例2
image-20200418143719247
image-20200418143808660
image-20200418143844591
例3
image-20200421191400095
image-20200421191417002
\(\\xi,\\eta\)复杂度不同
方法:留下偏复杂一部分,凑成某式的导数,用拉格朗日中值定理;或者凑成连个两个导数的比值,用柯西中值定理。
image-20200418144323608
例1
image-20200418144520471
image-20200418144729966
image-20200418144833788
例2
image-20200418144932552
image-20200418145022666
image-20200418145124271
image-20200418145212288
例3
image-20200420105317475
image-20200420104915669
例4
image-20200421193128025


例5
这题第二问要想到使用第一问的结论
image-20200422115052225
image-20200422115033884
求证存在\(\\epsilon,\\xi,\\eta\)使等式成立
例1
image-20200421143911960
image-20200421143943207
拉格朗日中值定理使用
出现\(f(b)-f(a)\)想到使用拉格朗日中值定理
例1
image-20200418152102250
例2
image-20200418152203402
例3
image-20200418152329175
image-20200418152406592
出现\(f(a), f(c), f(b)\) 想到使用2次拉格朗日中值定理
例1
image-20200418152916469
image-20200418155808392
例2
image-20200418160135906
image-20200418160302541
image-20200418160344460
例3
image-20200419185922277
image-20200419185949907
不等式的证明
例1
image-20200421204048417
image-20200421204128250
其实设\(f(x)=x,g(x)=ln(x)\)用柯西中值定理来做也简单。
发表回复